Build Your First Multilingual AI Agent with SUTRA and Agno
Learn how to build your first multilingual AI agent using Agno and SUTRA — a powerful combination for creating intelligent, language-aware assistants. This beginner-friendly guide walks you through setup, examples, and real-time data integration using DuckDuckGo and Yahoo Finance.

SUTRA, a family of large multilingual language models (LMLMs), excels in handling over 50 languages, making it ideal for applications requiring cultural and linguistic diversity. Agno, a lightweight and model-agnostic library, complements SUTRA by enabling the creation of intelligent agents with memory, reasoning, and tool integration.
This guide will walk you through setting up a multilingual AI agent, running examples, and leveraging tools like DuckDuckGo and Yahoo Finance for real-time data.
Prerequisites
Before diving in, ensure you have:
- A SUTRA API key from TWO AI's SUTRA API page
- Basic familiarity with Python and Jupyter notebooks
- Access to Google Colab
Setting Up the Environment
Step 1: Install Required Packages
!pip install openai agno duckduckgo-search yfinance
These packages include:
- openai: For interacting with SUTRA's API.
- agno: The Agno library for building AI agents.
- duckduckgo-search: For real-time web searches.
- yfinance: For accessing stock market data.
Step 2: Configure API Keys
import os from google.colab import userdata # Set the API keys from Colab secrets os.environ["OPENAI_API_KEY"] = userdata.get("SUTRA_API_KEY") os.environ["TAVILY_API_KEY"] = userdata.get("TAVILY_API_KEY")
🔐 Replace SUTRA_API_KEY with your actual key from TWO AI.
Using SUTRA with OpenAI Client
from openai import OpenAI client = OpenAI( base_url='https://api.two.ai/v2', api_key=os.environ["SUTRA_API_KEY"] ) response = client.chat.completions.create( model="sutra-v2", messages=[ {"role": "system", "content": "You are a helpful assistant that specializes in Indian languages and culture."}, {"role": "user", "content": "Tell me about the importance of the Ganga river in Indian culture."} ] ) print(response.choices[0].message.content)
Building Multilingual AI Agents with Agno
Example 1: Cultural Q&A Agent
from agno.agent import Agent from agno.models.openai.like import OpenAILike sutra_agent = Agent( model=OpenAILike( id="sutra-v2", api_key=os.getenv("SUTRA_API_KEY"), base_url="https://api.two.ai/v2" ), description="You are a helpful assistant specializing in Indian culture and history.", markdown=True ) sutra_agent.print_response("Tell me about the history of yoga in India.", stream=True)
Example 3: Storytelling Agent
story_agent = Agent( model=OpenAILike( id="sutra-v2", api_key=os.getenv("SUTRA_API_KEY"), base_url="https://api.two.ai/v2" ), description="You are a creative storyteller specializing in Indian folklore.", markdown=True ) story_agent.print_response("Write a short story about a magical tree in an Indian village.", stream=True)
Example 2: Code Explanation Agent
sample_code = ''' def diwali_date(year): return f'Diwali in {year} is likely in October or November.' print(diwali_date(2025)) ''' code_agent = Agent( model=OpenAILike( id="sutra-v2", api_key=os.getenv("SUTRA_API_KEY"), base_url="https://api.two.ai/v2" ), description="You are an expert in explaining Python code, especially related to Indian culture.", markdown=True ) code_agent.print_response(f"Explain this Python code:\n{sample_code}", stream=True)
Example 3: Stock Market Agent
from agno.tools.yfinance import YFinanceTools sutra_agent = Agent( model=OpenAILike( id="sutra-v2", api_key=os.getenv("SUTRA_API_KEY"), base_url="https://api.two.ai/v2" ), description="You are an expert in analyzing stock market data using YFinanceTools.", markdown=True, tools=[YFinanceTools()] ) sutra_agent.print_response("How is TSLA stock doing right now in Hindi?", stream=True)
Example 4: Multilingual Agent with Reasoning
from agno.tools.duckduckgo import DuckDuckGoTools sutra_agent_with_tools = Agent( model=OpenAILike( id="sutra-v2", api_key=os.getenv("SUTRA_API_KEY"), base_url="https://api.two.ai/v2" ), description="You are a helpful assistant specializing in Indian languages, culture, and current events. Provide accurate and detailed responses in Hindi when requested, using DuckDuckGoTools for up-to-date information.", tools=[DuckDuckGoTools()], show_tool_calls=True, markdown=True ) query = ''' भारत के अंतरिक्ष कार्यक्रम में हाल के विकास क्या हैं? DuckDuckGoTools का उपयोग करके नवीनतम जानकारी प्राप्त करें और निम्नलिखित शामिल करें: 1. हाल की मिशन सफलताएँ (उदाहरण: SpaDeX, Gaganyaan)। 2. भविष्य की योजनाएँ (उदाहरण: चंद्रयान-4, भारतीय अंतरिक्ष स्टेशन)। 3. निजी क्षेत्र की भागीदारी। हिंदी में विस्तृत और संरचित उत्तर प्रदान करें, प्रत्येक अनुभाग को स्पष्ट रूप से लेबल करें। ''' sutra_agent_with_tools.print_response(query, stream=True)
Next Steps
- 🔍 Experiment with Prompts: Customize prompts and agent descriptions.
- 🧠 Combine Tasks: Build agents that merge tasks like translation + storytelling.
- 📘 Explore the API: Visit the Sutra API Docs for more options.
- 🌍 Share Your Work: Publish your creations and tag the community!
🌟 Share Your Work
Contribute your chatbot to the open-source community:
- ✨ Submit to sutra-cookbook GitHub repo
- Share your notebook with your team or Audience
💡 Tips & Tricks
- ✅ Multilingual Power: Use sutra-v2 to support 50+ languages
- 📚 Optimal Chunks: Stick with chunk_size = 1000 and chunk_overlap = 100
🌍
Community First: Star the repo and share feedback
📘️ Conclusion
Combining RAG with SUTRA empowers you to build intelligent, multilingual, document-aware chatbots—perfect for education, community discussions, and global learning.
🔗 Resources & Community
- 🌐 Website: two.ai
- 💻 GitHub: sutra-cookbook
- 💬 Discord: Join the community
- 🤞 Twitter: @sutra_dev
- 💼 LinkedIn: TWO Platforms
AI That Keeps You Ahead
Get the latest AI insights, tools, and frameworks delivered to your inbox. Join builders who stay ahead of the curve.
You Might Also Like

How FAISS is Revolutionizing Vector Search: Everything You Need to Know
Discover FAISS, the ultimate library for fast similarity search and clustering of dense vectors! This in-depth guide covers setup, vector stores, document management, similarity search, and real-world applications. Master FAISS to build scalable, AI-powered search systems efficiently! 🚀

Smolagents a Smol Library to build great Agents
In this blog post, we delve into smolagents, a powerful library designed to build intelligent agents with code. Whether you're a machine learning enthusiast or a seasoned developer, this guide will help you explore the capabilities of smolagents, showcasing practical applications and use cases.

Building with LLMs: A Practical Guide to API Integration
This blog explores the most popular large language models and their integration capabilities for building chatbots, natural language search, and other LLM-based products. We’ll also explain how to choose the right LLM for your business goals and examine real-world use cases.